

...

RuDy
Perform like a Star

Tomasz StachewiczTomasz Stachewicz
Euruko 2009Euruko 2009 :: Barcelona :: Barcelona

RuDy
Perform like a Star

Tomasz StachewiczTomasz Stachewicz
Euruko 2009Euruko 2009 :: Barcelona :: Barcelona

Is your language
a Rock Star?

(Lisp)

(COBOL)

Metal!

But we want performance.

Even Matz wants performance.

We want Metal, or at least close to.

What Metal Star
your language is?

C

C++

Assembler

Pascal

 D

There are many flavors of metal

Let's have an overview

The main problem with
writing extensions for Ruby?

The main problem with
writing extensions for Ruby?

C

Switching from Ruby to C hurts

Ruby:Ruby:
● Object-OrientedObject-Oriented
● GCGC
● namespacingnamespacing
● dynamic arraysdynamic arrays
● hashes, stringshashes, strings
● unit testingunit testing
● exceptionsexceptions
● poor performancepoor performance

Switching from Ruby to C hurts

Ruby:Ruby:
● Object-OrientedObject-Oriented
● GCGC
● namespacingnamespacing
● dynamic arraysdynamic arrays
● hashes, stringshashes, strings
● unit testingunit testing
● exceptionsexceptions
● poor performancepoor performance

C:C:
● structs at moststructs at most
● malloc, freemalloc, free
● only global or scopeonly global or scope
● static onlystatic only
● ??????
● ??????
● segmentation faultsegmentation fault
● good performancegood performance

Why not use C++?

And why don't you?

Popularity of writing extentions in
C++ speaks for itself.

C++: A Classic Quote

The good news is that in 1995 we will have a
good operating system and programming

language; the bad news is that they will be Unix
and C++.

Richard P. Gabriel, 1991
(http://naggum.no/worse-is-better.html)

Yeah, I don't like C++.

But what are our options when
we don't want crudeness of C

and awkwardness of C++?

D

D?

A language that C++ could have
been, should have been but will

never be.

Why D is cool
● New and young (1.0: Jan 2007)New and young (1.0: Jan 2007)
● Compiles to machine code, C++ performanceCompiles to machine code, C++ performance
● features inspired by Ruby, Python, Javafeatures inspired by Ruby, Python, Java
● binary-linkable with C (both ways)binary-linkable with C (both ways)

(a few) features of D

● Java-like OOP (single inheritance, interfaces)Java-like OOP (single inheritance, interfaces)
● templates, mixinstemplates, mixins
● reflection and meta-programmingreflection and meta-programming
● dynamic arrays, hashmaps, stringsdynamic arrays, hashmaps, strings
● GCGC
● exceptions with scopesexceptions with scopes
● unit testsunit tests

So how do I write
Ruby extension in D?

use
RuDy

http://github.com/tomash/rudy

inspired by Pyd (pyd.dsource.org)
from Python world

What's so cool about RuDy?

bindings (on steroids): write
extensions like you would in C

C D

Just bindings?

Hell no.
Even despite they'd be enough

by bringing D to Ruby world.

Converting to Ruby Value

Different conversion code depending on type?
Why?

C RuDy

Converting
from Ruby value to native type?

Can you remember all the methods from API?

C

RuDy

How about some nice wrapping?

for true OOP and convenient operator overload?

Well, there's RudyObject

C

RuDy

Defining functions in Ruby...

...could use some love as well!

C

RuDy
(RuDy still needs some development here)

What is your wish?
"Combine the above:

I'd like to have
my function taking and ret'ing native D types,

arguments converted Ruby->D,
return value converted D->Ruby,

defined by def!("Scope",my_method);
all automagically".

Possible? Yes, it's in PyD.

Here yet? Nope, but in weeks to come.

Any other wish?

"I'd like to have D class
being exposed fully to Ruby

with def!(MyClass)
with its public methods wrapped

by def!(method) described above."

It's in PyD, it's coming to RuDy.

About to come to RuDy near you

D function/delegate converted by to_ruby_value
to callable Ruby Proc/lambda

Sensible build system (D-aware extconf)

Wished-for features

(and some fellow developers, I hope ;)

Where can I get it?

code: http://github.com/tomash/rudy

contact me: http://tomash.wrug.eu

note:
RuDy is far from 1.0

Features described above are fully working
and covered with unit tests,

but RuDy still needs a lot of work
(on the new wished features ;)

Before you start hacking...

Remember the
rules of Metal!

\m/

Thank you!

Q&A time?Q&A time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

